Hydroxylation of II with osmium tetroxide,7 periodate oxidation of the oily diol, and treatment with Girard's reagent P gave 4-(3,4-dimethoxyphenyl)-3-methyl-2-butanone (III), isolated as the semicarbazone (75% yield from II), m.p. 158.7-159.3°,  $[\alpha]_D^{20}$  -48.0° (chloroform) (Found: C, 60.05; H, 7.57; N, 15.08). (+)-3,4-Dimethoxy- $\alpha$ methylhydrocinnamic acid (IV), b.p.<sub>0.01</sub> 130° (bath temperature),  $[\alpha]_D^{21} + 27.5^{\circ}$  (chloroform) (Found: C, 63.84; H, 7.16), obtained by resolving the racemate8 with quinine, was converted with oxalyl chloride to the chloride, b.p.<sub>0.015</sub> 90° (bath temperature),  $[\alpha]_D^{20}$  +20.5° (benzene), which with ethereal methylmagnesium bromide at -74° afforded the optical antipode of III, again isolated as the semicarbazone (17\% yield<sup>9</sup>), m.p. 156.5-157.5°,  $[\alpha]_{D}^{21}$  $+46.7^{\circ}$  (chloroform).

IV and (+)- $\alpha$ -methylhydrocinnamic acid (V),  $[\alpha]_D +27.7^{\circ}$  (chloroform),  $^{10}$  have identical rotations; hence they most certainly  $^{11}$  belong to the same configurational series. Curtius degradation of  $V^{12}$  gave (+)- $\alpha$ -methylphenethylamine (VI), identical in rotatory sign with the product obtained from p-phenylalanine (VII) by Karrer and Ehrhardt.  $^{13}$  It follows that II possesses the p-configuration and that I is 1D, 2L, 3D, 4D.  $^{14}$  These findings also indicate the absolute configurations of other lignans, insofar as they have been previously correlated  $^{3,15}$  with I or II.

(7) Criegee, Marchand, and Wannowius, Ann., 550, 99 (1942).

(8) Haworth, Mavin, and Sheldrick, J. Chem. Soc., 1423 (1934).

(9) Dimethylcadmium yielded 46% partly racemized

semicarbazone, m.p. 155-156°,  $[\alpha]_{21}^{21}$  +36°. (10) Pickard and Yates, J. Chem. Soc., 95, 1011 (1909); cf. Kipping and Hunter, J. Chem. Soc., 83, 1005 (1903).

(11) See Klyne, ref. 6, pp. 204 and 78, respectively.

Jones and Wallis, J. Am. Chem. Soc., 48, 169 (1926);
Wallis and Nagel, J. Am. Chem. Soc., 53, 2787 (1931).

(13) Karrer and Ehrhardt, Helv. Chim. Acta, 34, 2202

(1951); cf. Leithe, Ber., 65, 660 (1932).

(14) Cf. Klyne, Chemistry & Industry, 1022 (1951). These assignments also agree with the McCasland system ("A New General System for the Naming of Stereoisomers," Chemical Abstracts, Columbus, Ohio, 1953), according to which I is expressed as D(1,3,4)A.

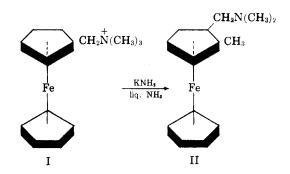
(15) Including the diarylbutanes, lariciresinol, pinoresinol, conidendrin, the peltatins; cf. Hartwell, Schrecker, Leiter, and Shilling, Abstracts of Papers, Am. Chem. Soc., 125th Meeting, 11M (1954).

$$\begin{array}{ccccccc} CH_3 & CH_3 & CO_2H \\ \vdots & \vdots & \vdots & \vdots \\ H-\overset{\cdot}{C}-CO_2H & \longrightarrow & H-\overset{\cdot}{C}-NH_2 & \longleftarrow & H-\overset{\cdot}{C}-NH_2 \\ \vdots & \vdots & \vdots & \vdots \\ CH_2C_6H_5 & CH_2C_6H_5 & CH_2C_6H_6 \\ V & VI & VII \end{array}$$

We are greatly indebted to Dr. W. Klyne for very stimulating discussions and extremely helpful suggestions. Miss Mary M. Trail performed a large portion of the experimental procedures.

ANTHONY W. SCHRECKER JONATHAN L. HARTWELL

LABORATORY OF CHEMICAL PHARMACOLOGY NATIONAL CANCER INSTITUTE<sup>16</sup> BETHESDA 14, MARYLAND


## Received February 20, 1956

(16) National Institutes of Health, Public Health Service, U. S. Department of Health, Education, and Welfare.

## Ortho Substitution Type of Rearrangement with Quaternary Ammonium Ions of Dicyclopentadienyliron by Potassium Amide<sup>1</sup>

Sir:

We have simulated the *ortho* substitution type of rearrangement of the benzyltrimethylammonium ion<sup>2</sup> with the ferrocenyltrimethylammonium ion<sup>3</sup> (I) which gave the 2-methyl derivative (II). This appears to be the first example of an aromatic nucleophylic type of reaction with such an iron compound.



Quaternary ammonium ion I (as the iodide) gave, with potassium amide in liquid ammonia (two hours), a 60% yield of tertiary amine II, b.p.

<sup>(1)</sup> This work was supported by the Office of Ordnance Research, U. S. Army.

<sup>(2)</sup> S. W. Kantor and C. R. Hauser, J. Am. Chem. Soc., 73, 4122 (1951).

<sup>(3)</sup> The more common electrophilic aromatic character of ferrocene has been noted by Woodward, Rosenblum, and Whiting, J. Am. Chem. Soc., 74, 3458 (1952).

Fe + HCHO + 
$$\dot{H}N(CH_3)_2$$
 1.  $\dot{CH_4COOH}$  Fe  $\dot{CH_4I}$  I

 $101-103^{\circ}$  at 0.3 mm. Anal. Calc'd for  $C_{14}H_{19}FeN:$  C, 65.38; H, 7.45; N, 5.45. Found: C, 65.16; H, 7.40; N, 5.74. The picrate (green-yellow plates) melted at 179–180° dec. Anal. Calc'd for  $C_{20}H_{22}-FeN_4O_7$ : C, 49.40; H, 4.56; N, 11.52; Fe, 11.49. Found: C, 49.48; H, 4.55; N, 11.48; Fe, 11.62.

The starting point for the present work was ferrocene (III) (dicyclopentadienyliron)<sup>5</sup> which was converted to tertiary amine (IV) essentially as described by Schmidle and Mansfield<sup>6</sup> for the corresponding reaction with methylstyrene.

Tertiary amine (IV), b.p. 91-92° at 0.45 mm.,

was obtained in 51% yield. Anal.<sup>4</sup> Calc'd for  $C_{13}H_{17}$ -FeN: C, 64.22; H, 7.05; N, 5.76. Found: C, 64.46; H, 6.83; N, 5.85. The *picrate* (red needles) melted at 162–163° dec. Anal.<sup>4</sup> Calc'd for  $C_{19}H_{20}$ -FeN<sub>4</sub>O<sub>7</sub>: C, 48.32; H, 4.27; N, 11.86; Fe, 11.83. Found: C, 48.22; H, 4.51; N, 11.81; Fe, 11.57.

Tertiary amine (IV) was methylated with methyl iodide to give in 95% yield the quaternaryammonium iodide of I (yellow crystals), which decomposed slowly at 220°. Anal.<sup>4</sup> Calc'd for C<sub>14</sub>H<sub>20</sub>FeIN: C, 43.66; H, 5.24; N, 3.64; Fe, 14.50. Found: C, 43.50; H, 5.26; N, 3.76; Fe, 14.24.

A more complete study of these and related reactions is being carried out.

DEPARTMENT OF CHEMISTRY DUKE UNIVERSITY DURHAM, N. C.

CHARLES R. HAUSER JACQUE K. LINDSAY

Received February 21, 1956

<sup>(4)</sup> Analysis by Galbraith Laboratories, Knoxville, Tennessee.

<sup>(5)</sup> We are indebted to Dr. R. L. Pruett of Linde Air Products, Tonawanda, N. Y., for a generous sample of this compound.

<sup>(6)</sup> C. J. Schmidle and R. C. Mansfield, J. Am. Chem. Soc., 77, 4636 (1955).